Je vais revenir sur le problème du dénombrement des triangles et le transformer un peu. Si au lieu de triangles, on devait compter des rectangles, combien y en aurait-il dans une colonne de rectangles.
Si la colonne n'en contient qu'un la réponse est évidente, il y en a 1
Si la colonne contient deux rectangles, il y a 2 rectangles de longueur 1 et 1 rectangle de longueur 2. 2 + 1 = 3
Si la colonne en contient trois, il y a 3 rectangles de longueur 1, 2 de longueur 2 et 1 de longueur 3. 3 + 2 + 1 = 6
Si la colonne en contient quatre, il y a 4 rectangles de longueur 1, 3 de longueur 2, 2 de longueur 3 et 1 de longueur 4. 4 + 3 + 2 + 1 = 10
Vous voyez où je veux en venir.
Une colonne de hauteur n, contiendra donc 1 + 2 + 3 + 4 + 5 +...+ n rectangles.
En relisant la colonne précédente on peut donc dire qu'une colonne de hauteur n contient n(n+1)/2 rectangles.
mardi 19 janvier 2010
Inscription à :
Publier les commentaires (Atom)
Aucun commentaire:
Enregistrer un commentaire